Confidence limits made easy: interval estimation using a substitution method.
نویسنده
چکیده
The use of confidence intervals has become standard in the presentation of statistical results in medical journals. Calculation of confidence limits can be straightforward using the normal approximation with an estimate of the standard error, and in particular cases exact solutions can be obtained from published tables. However, for a number of commonly used measures in epidemiology and clinical research, formulae either are not available or are so complex that calculation is tedious. The author describes how an approach to confidence interval estimation which has been used in certain specific instances can be generalized to obtain a simple and easily understood method that has wide applicability. The technique is applicable as long as the measure for which a confidence interval is required can be expressed as a monotonic function of a single parameter for which the confidence limits are available. These known confidence limits are substituted into the expression for the measure--giving the required interval. This approach makes fewer distributional assumptions than the use of the normal approximation and can be more accurate. The author illustrates his technique by calculating confidence intervals for Levin's attributable risk, some measures in population genetics, and the "number needed to be treated" in a clinical trial. Hitherto the calculation of confidence intervals for these measures was quite problematic. The substitution method can provide a practical alternative to the use of complex formulae when performing interval estimation, and even in simpler situations it has major advantages.
منابع مشابه
Bayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کاملA confidence-aware interval-based trust model
It is a common and useful task in a web of trust to evaluate the trust value between two nodes using intermediate nodes. This technique is widely used when the source node has no experience of direct interaction with the target node, or the direct trust is not reliable enough by itself. If trust is used to support decision-making, it is important to have not only an accurate estimate of trust, ...
متن کاملNon-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملConfidence Interval Estimation of the Mean of Stationary Stochastic Processes: a Comparison of Batch Means and Weighted Batch Means Approach (TECHNICAL NOTE)
Suppose that we have one run of n observations of a stochastic process by means of computer simulation and would like to construct a condifence interval for the steady-state mean of the process. Seeking for independent observations, so that the classical statistical methods could be applied, we can divide the n observations into k batches of length m (n= k.m) or alternatively, transform the cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of epidemiology
دوره 149 9 شماره
صفحات -
تاریخ انتشار 1998